Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059913

RESUMO

Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Mamíferos/metabolismo
2.
Cells ; 12(21)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37947649

RESUMO

The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.


Assuntos
Sinalização do Cálcio , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Glicosilação , Cálcio/metabolismo , Proteômica , Estrogênios/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo
3.
Sci Adv ; 9(19): eadd3685, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172090

RESUMO

In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos/genética , Estrogênios , Purinas/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
4.
Cell Mol Life Sci ; 80(3): 80, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869202

RESUMO

Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Receptor alfa de Estrogênio , Tamoxifeno , Estrogênios , Linhagem Celular
5.
J Mol Biol ; 435(3): 167931, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572238

RESUMO

The molecular chaperones Hsp90 and Hsp70 and their regulatory co-chaperone Hop play a key role at the crossroads of the folding pathways of numerous client proteins by forming fine-tuned multiprotein complexes. Alterations of the biomolecules involved may functionally impact the chaperone machinery: here, we integrate simulations and experiments to unveil how Hop conformational fitness and interactions can be controlled by the perturbation of just one residue. Specifically, we unveil how mechanisms mediated by Hop residue Y354 control Hop open and closed states, which affect binding of Hsp70/Hsp90. Phosphorylation or mutation of Hop-Y354 are shown to favor structural ensembles that are indeed not optimal for stable interactions with Hsp90 and Hsp70. This disfavors cellular accumulation of the stringent Hsp90 clients glucocorticoid receptor and the viral tyrosine kinase v-Src, with detrimental effects on v-Src activity. Our results show how the post-translational modification of a specific residue in Hop provides a regulation mechanism for the larger chaperone complex of which it is part. In this framework, the effects of one single alteration are amplified at the cellular level through the perturbation of protein-interaction networks.


Assuntos
Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Humanos , Fosforilação , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ligação Proteica
6.
Nat Commun ; 13(1): 6271, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270993

RESUMO

The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life. Although reduced Hsp90 levels correlate with aging, it was unknown whether eukaryotic cells and organisms can tune the basal Hsp90 levels to alleviate physiologically accumulated stress. We have investigated whether and how mice adapt to the deletion of three out of four alleles of the two genes encoding cytosolic Hsp90, with one Hsp90ß allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90ß protein to at least wild-type levels. Our studies reveal an internal ribosome entry site in the 5' untranslated region of the Hsp90ß mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We find that the minimum amount of total Hsp90 required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have markedly increased during eukaryotic evolution.


Assuntos
Proteínas de Choque Térmico HSP90 , Sítios Internos de Entrada Ribossomal , Camundongos , Animais , Regiões 5' não Traduzidas/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , RNA Mensageiro/genética , Mamíferos/genética
7.
Biomolecules ; 12(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36139005

RESUMO

The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90ß. These two isoforms are 85% identical and encoded by two different genes. Hsp90ß is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteoma , Animais , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Biomolecules ; 12(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883436

RESUMO

The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone's nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.


Assuntos
Proteínas de Choque Térmico HSP90 , Mitocôndrias , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Homeostase , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilação Oxidativa
9.
ACS Appl Mater Interfaces ; 14(26): 29521-29536, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729793

RESUMO

Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials with well-defined molecular structures and unique biophysical properties, rendering them highly attractive for biological applications. We set out to study the impact of different ligand shells of atomically similar nanoclusters on cellular recognition and response. To understand the effects of atomically precise nanoclusters with identical composition on cells, we selected two different water-soluble gold nanoclusters protected with captopril (Capt) and glutathione (GSH): Au25(Capt)18 (CNC) and Au25(GSH)18 (GNC), respectively. We demonstrated that a change of the ligand of the cluster completely changes its biological functions. Whereas both nanoclusters are capable of internalization, only CNC exhibits remarkable cytotoxicity, more specifically on cancer cells. CNC shows enhanced cytotoxicity by inhibiting the OXPHOS of mitochondria, possibly by inhibiting the ATP synthase complex of the electron transport chain (ETC), and by initiating the leakage of electrons into the mitochondrial lumen. The resulting increase in both mitochondrial and total cellular ROS triggers cell death indicated by the appearance of cellular markers of apoptosis. Remarkably, this effect of nanoclusters is independent of any external light source excitation. Our findings point to the prevailing importance of the ligand shell for applications of atomically precise nanoclusters in biology and medicine.


Assuntos
Captopril , Ouro , Captopril/química , Captopril/farmacologia , Glutationa , Ouro/química , Ouro/farmacologia , Ligantes , Mitocôndrias , Fosforilação Oxidativa
10.
Nat Commun ; 13(1): 2104, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440541

RESUMO

The epithelial to mesenchymal transition (EMT) has been proposed to contribute to the metastatic spread of breast cancer cells. EMT-promoting transcription factors determine a continuum of different EMT states. In contrast, estrogen receptor α (ERα) helps to maintain the epithelial phenotype of breast cancer cells and its expression is crucial for effective endocrine therapies. Determining whether and how EMT-associated transcription factors such as ZEB1 modulate ERα signaling during early stages of EMT could promote the discovery of therapeutic approaches to suppress metastasis. Here we show that, shortly after induction of EMT and while cells are still epithelial, ZEB1 modulates ERα-mediated transcription induced by estrogen or cAMP signaling in breast cancer cells. Based on these findings and our ex vivo and xenograft results, we suggest that the functional interaction between ZEB1 and ERα may alter the tissue tropism of metastatic breast cancer cells towards bone.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Ósseas/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/fisiologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
11.
Cancers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205702

RESUMO

Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.

12.
Cell Mol Life Sci ; 78(23): 7257-7273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34677645

RESUMO

The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Proteína Oncogênica pp60(v-src)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteostase/fisiologia , Receptores de Glucocorticoides/metabolismo
13.
Nat Commun ; 11(1): 5975, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239621

RESUMO

Hop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function. Human cell lines and the budding yeast with deletions of the Hop/Sti1 gene display reduced proteasome activity due to inefficient capping of the core particle with regulatory particles. Unexpectedly, knock-out cells are more proficient at preventing protein aggregation and at promoting protein refolding. Without the restraint by Hop, a more efficient folding activity of the prokaryote-like Hsp70-Hsp90 complex, which can also be demonstrated in vitro, compensates for the proteasomal defect and ensures the proteostatic equilibrium. Thus, cells may act on the level and/or activity of Hop to shift the proteostatic balance between folding and degradation.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Células A549 , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Dobramento de Proteína , Proteólise , Proteínas de Saccharomyces cerevisiae/genética
14.
J Pers Med ; 10(4)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066497

RESUMO

miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue.

15.
Anal Chim Acta ; 1105: 28-44, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32138924

RESUMO

Untargeted metabolomics is now widely recognized as a useful tool for exploring metabolic changes taking place in biological systems under different conditions. By its nature, this is a highly interdisciplinary field of research, and mastering all of the steps comprised in the pipeline can be a challenging task, especially for those researchers new to the topic. In this tutorial, we aim to provide an overview of the most widely adopted methods of performing LC-HRMS-based untargeted metabolomics of biological samples. A detailed protocol is provided in the Supplementary Information for rapidly implementing a basic screening workflow in a laboratory setting. This tutorial covers experimental design, sample preparation and analysis, signal processing and data treatment, and, finally, data analysis and its biological interpretation. Each section is accompanied by up-to-date literature to guide readers through the preparation and optimization of such a workflow, as well as practical information for avoiding or fixing some of the most frequently encountered pitfalls.


Assuntos
Metabolômica , Animais , Cromatografia Líquida , Humanos , Espectrometria de Massas , Projetos de Pesquisa
16.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049011

RESUMO

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Assuntos
Quimioterapia Combinada/métodos , L-Lactato Desidrogenase/antagonistas & inibidores , Neoplasias/imunologia , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico
17.
BMC Biol ; 18(1): 10, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31987035

RESUMO

BACKGROUND: The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. RESULTS: We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. CONCLUSIONS: Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.


Assuntos
Proteínas de Choque Térmico HSP90/genética , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Fosforilação Oxidativa , Linhagem Celular , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
18.
Nat Commun ; 10(1): 1833, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015428

RESUMO

In response to extracellular signals, many signalling proteins associated with the plasma membrane are sorted into endosomes. This involves endosomal fusion, which depends on the complexes HOPS and CORVET. Whether and how their subunits themselves modulate signal transduction is unknown. We show that Vps11 and Vps18 (Vps11/18), two common subunits of the HOPS/CORVET complexes, are E3 ubiquitin ligases. Upon overexpression of Vps11/Vps18, we find perturbations of ubiquitination in signal transduction pathways. We specifically demonstrate that Vps11/18 regulate several signalling factors and pathways, including Wnt, estrogen receptor α (ERα), and NFκB. For ERα, we demonstrate that the Vps11/18-mediated ubiquitination of the scaffold protein PELP1 impairs the activation of ERα by c-Src. Thus, proteins involved in membrane traffic, in addition to performing their well-described role in endosomal fusion, fine-tune signalling in several different ways, including through ubiquitination.


Assuntos
Proteínas Correpressoras/metabolismo , Endossomos/metabolismo , Fatores de Transcrição/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína Tirosina Quinase CSK , Receptor alfa de Estrogênio/metabolismo , Células HEK293 , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia , Proteínas Wnt/metabolismo , Quinases da Família src/metabolismo
19.
PLoS One ; 14(2): e0208287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726209

RESUMO

The molecular chaperone Hsp90 is an essential and highly abundant central node in the interactome of eukaryotic cells. Many of its large number of client proteins are relevant to cancer. A hallmark of Hsp90-dependent proteins is that their accumulation is compromised by Hsp90 inhibitors. Combined with the anecdotal observation that cancer cells may be more sensitive to Hsp90 inhibitors, this has led to clinical trials aiming to develop Hsp90 inhibitors as anti-cancer agents. However, the sensitivity to Hsp90 inhibitors has not been studied in rigorously matched normal versus cancer cells, and despite the discovery of important regulators of Hsp90 activity and inhibitor sensitivity, it has remained unclear, why cancer cells might be more sensitive. To revisit this issue more systematically, we have generated an isogenic pair of normal and oncogenically transformed NIH-3T3 cell lines. Our proteomic analysis of the impact of three chemically different Hsp90 inhibitors shows that these affect a substantial portion of the oncogenic program and that indeed, transformed cells are hypersensitive. Targeting the oncogenic signaling pathway reverses the hypersensitivity, and so do inhibitors of DNA replication, cell growth, translation and energy metabolism. Conversely, stimulating normal cells with growth factors or challenging their proteostasis by overexpressing an aggregation-prone sensitizes them to Hsp90 inhibitors. Thus, the differential sensitivity to Hsp90 inhibitors may not stem from any particular intrinsic difference between normal and cancer cells, but rather from a shift in the balance between cellular quiescence and activity.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Humanos , Camundongos , Chaperonas Moleculares/genética , Células NIH 3T3 , Proto-Oncogenes/genética , Transdução de Sinais/efeitos dos fármacos
20.
J Chromatogr A ; 1592: 47-54, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30685186

RESUMO

Since the ultimate goal of untargeted metabolomics is the analysis of the broadest possible range of metabolites, some new metrics have to be used by researchers to evaluate and select different analytical strategies when multi-platform analyses are considered. In this context, we aimed at developing a scoring approach allowing to compare the performance of different LC-MS conditions for metabolomics studies. By taking into account both chromatographic and MS attributes of the analytes' peaks (i.e. retention, signal-to-noise ratio, peak intensity and shape), the newly proposed score reflects the potential of a set of LC-MS operating conditions to provide useful analytical information for a given compound. A chemical library containing 597 metabolites was used as a benchmark to apply this approach on two RPLC and three HILIC methods hyphenated to high resolution mass spectrometry (HRMS) in positive and negative ionization modes. The scores not only allowed to evaluate each analytical platform, but also to optimize the number of analytical methods needed for the analysis of metabolomics samples. As a result, the most informative combination of three LC methods and ionization modes was found, leading to a coverage of nearly 95% of the detected compounds. It was therefore demonstrated that the overall performance reached with three selected methods was almost equivalent to the performance reached when five LC-MS conditions were used.


Assuntos
Cromatografia Líquida , Metabolômica/métodos , Espectrometria de Massas em Tandem , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...